MMP Learning Seminar.

Week 51.

Content:

Semi-lop canonical abundance.

Finiteness of B-representations:

Theorem 1.2: projective all pair (X, Δ) s.t $Kx+\Delta$ is semiample and Δ is a Q -divisor. There exists me N

such that the impe of the B-representation

is finite for M divisible by m

Abundance for slc pairs:

Theorem 1.4: Let (X, Δ) be a sle pair $f: X \longrightarrow S$ projective morphism. $n: \overline{X} \longrightarrow X$ normalization

 $n^{*}(K_{\times}+\Delta) = K_{\bar{\times}}+\Delta+\bar{D}$, where \bar{D} is the double locus.

If $K_{\overline{x}} + \overline{\Delta} + \overline{D}$ is semiample over S, then $K_{x} + D$ is semiample over S.

Corollary 1.5: Let (X, A) be a Q-factorial dlt pair which is projective over a base S, and T := LDJ., where

△ is a G-divisor. Suppose that:

(1) $K_x + \Delta$ is nef over S,

(2) (Kx+D)17; is semiample over S for each component. Ti ST.

(3) Kx+D-EP is semiample over S for some Q-div Pzs

with supp (P) = supp T and E > 0 sufficiently small. then $K \times + \Delta$ is semazmple over S.

Corollary 1.6: (X, Δ) is slc $f: X \longrightarrow S$ a projective morphism s.t $Kx+\Delta \equiv a.50$, then

Kx + A~ ors o. W | A im: Kx + A semismple over S.

Log canonical stratifications:

 $f: (X, \Delta) \longrightarrow Z$ crepant lop structure $K \times + \Delta \sim g, a \circ 0$

 $S^*(Z, X, \Delta) \subseteq Z$ the union of all $\leq i$ -dimensional lc centers of f.

Set Si(Z) = S: (Z, X, A)\ S:-, (Z, X, A)

Si (Z) are locally closed subspaces of Z of pure dim 2.

 $Z = \coprod_i S_i(Z)$, $S_{dim(z)}(Z)$ the open stratum.

The union of the S: (Z) is called the k stratification of Z.

(Z,S*) Its boundary is B(Z,S*) := Z\Sdm(2)(Z).

An L center of (Z, S^*) is the closure of an irreducible component of some stratum of S; CZ).

Lemma: Si (Z) are unibrach and B(Z, S+) is seminormal.

Unibranch & seminormal (>> normal

Lemma: f: (X, a) -> Z dlt lop crepant structure and (Z,S") the lo strata. YCX lo center. Y - W - Z Stein factorization fr: T -> W 15 2 crepant log structure $(Y, \Delta Y)$ $S:(W) = \pi^{-1}(S:CZ)$ for all i. Definition: (Zj. Sx) be two stratified spaces. stratified 1) the following equivalent conditions hold:

A finite morphism 12: Z, -> Zz is said to be

(1) $5! (21) = \pi^{-1} (5!^2 (22))$ for all i,

(1) for every component W; \subseteq S; (Z;). its image $12 (W_i)$ is a component of $5^2 (Z_2)$.

Definition (stratification of le organ).

(Y, 5*) stratified space is of to origin if the following conditions hold:

(1) all the strata SICY) are unibranch.

(2) there are crepant structures $f: (X_i, \Delta_i) \longrightarrow Z_i$ with l_c strabifications (Z_i, S_*) and a finite,

Surjective, stratified morphism TC: 11; (Z;, 5;) -> (Y, 5.)

Remark: $f: (X/\Delta) \longrightarrow W$ is a crepant structure, $Y \subseteq W$ union of Ic centers, $S_1(Y) := Y \cap S_1(W)$ the seminormalization of (Y, S*) is of Ic origin

Definition (hereditary log canonical centers):

(Y, S*) stratified space of la origin

The hereditary Ic centers of CY, 500) are defined as follows.

(1) W S T a la center Wn To Y normalization

5: (W") = 2-1 (Si Cr)). Then (W", Sa) is a

hereditary lcc.

(2) If W \(\pm \) then every hereditary lcc of CWM, 5 = 1 is also a Hice of Cr.s.).

Remark: Each HIcc (W.S*) is a normal, stratified space of log canonical orgin. and comes with a stratified finite morphism $C: CW, S^*) \longrightarrow CY, S^-)$ Gluing relations: 17; : (Wj.5") -> (T,5") finile set of hlcc. Zijk: W; -- W; stratified isomorphism. RCZ) = Y on geometric points of Y generated by the relations Ti (w) ~ Te; (Tijh (w)) Y (v -> 11. W; The geometric quotient is a seminormal stratification (X,5"). Theorem: (Y, S") stratified space of la organ and RCT) a pluing relation on CT 5"). Assume that the RCT) - equivalence classes are all finite. Then the geometric quotient: $y = (Y, S^*) \longrightarrow (Y/R(T), g_*S^*)$ $y = (Y, S^*) \longrightarrow (Y/R(T), g_*S^*)$ $y = (Y/R(T), g_*S^*)$

lop canonical strabifications:

N :

SN: Both X and BX are both seminormal.

HN:
$$X > (N) + 72 \cdot X^n \longrightarrow X$$
 stratifiable + BCX

HN:
$$X > (N) + P \times X^{N} \longrightarrow X \text{ stratifiable} + B(X^{N}) ; s (HN)$$

HSN: $X > (SN) + P \times X^{N} \longrightarrow X \text{ stratifiable} + B(X^{N}) ; s (HSN)$

Corollary:
$$(\tilde{X}, \tilde{\Delta} + \tilde{D})$$
 k, $\tilde{\tau}: \tilde{D}^n \longrightarrow \tilde{D}^n$ involubion.
Assume $\tilde{\tau}$ maps lee of $(\tilde{D}^n, D_i f f \tilde{D}^n \tilde{\Delta})$ to lee's.

hormalization
$$(\overline{X}, \overline{D} + \overline{\Delta}, \overline{\tau})$$
 such that.

(4) $(\overline{X}, \overline{\Delta} + \overline{D}, \overline{\tau}) = (\overline{X}, \overline{\Delta} + \overline{D}, \overline{\tau})$ and

(2)
$$R(\overline{\tau}) = red(\overline{\chi}, \overline{\chi})$$

Towards the proof of 1.4: induced by $K_{\overline{x}} + \overline{\Delta} + \overline{D}$. (54.82): F === F. F = LAL impe of $D^n \longrightarrow \overline{X}$. Dn := normilization of D. Kx+A+D $K_{X}+\Delta+D$ $K_{$ It suffices to check this finiteness over generic points of strata V° of SiT We must cheek Rxsn C7x7xn is finite over Vox n, n = penent point of F(11.)

Proposition: Minimal locis are birational. $\begin{array}{cccc}
Z & & & & & & & & & & \\
b_{ii} & & & & & & & & & \\
Z' & & & & & & & & & & \\
\end{array}$ Theorem: Let RETXT be the relation penerated by $T \Longrightarrow \overline{\Upsilon}$ p₁ : Spri $(\overline{\Upsilon}, X^d, \Delta^d) \longrightarrow S_1 \overline{\Upsilon}$ be the induced finite morphisms. $\overline{\mathcal{I}}_{ij} = 21g$ dosine of the peneric point of f(Vi;). Then ((pinpi) (RO (Sir x Sir)) x s \(\vec{Vij} \n Vij \n s \(\vec{Vij} \n s \vec{Vij} \) is contained in the graph Ug I(XG)) for all ge Bir (Zni, Diff * Ad) Proof of 1.4: By finiteness of B-representations,

Us I(XY)) is finite, hence R=7 is finite 1

Proof of Proposition 1.5: T_i comp of $T = L\Delta J$. $K_{7} + \Delta_{7} = K_{x} + \Delta I_{7}$ is somizable T - 11, Ti By Thm 1.4 KT + 17 is semiample Bs Cm (Kx + 4) must be confirmed in the support of T. $m(K_{X}+\Delta)-T=(m-1)(K_{X}+\Delta-\epsilon P)+$ semismple Kx+ A - (T - (m-1) EP) ~ klb Kollai's injectivity: R1-1 x Ox (m(Kx+a)-T) -> R'+ Ox (m (Kx-a)) >> f f (97 (m (KT + △1)) $f^*f_*(O_x Cm(K_x + \Delta))$ Ox (m (kx+a)) - >>> OT (m(kT+at))

C semiample along T semiample over S.

Proof of 1.6: Thm 1.4 - Assume (X, A) is la dlt mod Assume (X, a) Q-fact + dlb. T= LAJ CT, DT) is soll. (Kx+A-ET)-MMP with scaling of an ample. over S. If it ends with a MFS then we proceed inductively. It ends with a minimil node comp of T is verbical Kx+41 ~ 0 on the general fiber. klt on the general fiber $(X, \Delta - \epsilon T)$ has a smm over the general fiber \Longrightarrow $(X, \Delta - \epsilon T)$ has a smm $(X', \Delta' - \epsilon T')$ over S. (X', Δ') is C, $K_{X'} + \Delta' \equiv 0$. CX', Δ' semizable over CX', Δ' difference CX', Δ' P=Td=MT', LDd] = supp Td. Σ' is a component Δ^d . $K\Sigma + \Delta \Sigma \equiv_S 0 \xrightarrow{\text{ind an dim}} K\Sigma + \Delta \Sigma' \text{ semicomple}$ X --- > X' S (Kx+2) - trivial. 1.5 > Kxd + \(\Delta \) serniample \(\sigma \) vor \(\sigma \) \(\text{Kx} \) + \(\Delta \) serniample \(\sigma \) \(\text{Kx} \) \(\Delta \) \(\text{Kx} \) \(\Delta \) \(\Delta \) \(\text{Serniample} \) \(\Delta \) \(\Delta